< GLOBALDEV

Interview Session Summary

Session Information

Candidate Company

Bohdan Nikolaichuk Globaldev

Job Posting Seniority
Middle

Interview Summary

Total Score Status
79/100 Completed

Suitability by Al

Yes

Questions Al Evaluation:

INTRODUCTION DIALOGUE:

QUESTION :

Question:

Describe your experience with Webpack and how it can be used to manage and optimize assets in a front-end
project.

DIALOGUE:

Al Interviewer

"Describe your experience with Webpack and how it can be used to manage and
optimize assets in a front-end project.

Candidate

First of all, using Webpack to bundle and optimize assets in a project. | use a lot of
different plugins for Webpack, but for optimization, | prefer using some configuration to
create code splitting, tree shaking, minification, and cache. Cache is very useful for
optimization, but | prefer using Vite.

Al Interviewer
"That's a good starting point! Could you give a more detailed answer or share a concrete

example?
Candidate
First of all, when we have a large project, it might not have good performance when it
creates bundling. After compiling, we have small pieces of our code, and for our website,
it's a bit easier to generate it. For example, image optimization is crucial, as videos and
large images can take a lot of memory. After using Webpack, we optimize our assets to
use less memory on our website.

Score:

73

Explanation:

The candidate's response demonstrates some understanding of Webpack's role in managing and optimizing
assets, including mentioning code splitting, tree shaking, minification, and caching. However, while these are
relevant points, the explanation lacks depth and specific examples of how they were applied in a project context.
The mention of preferring Vite introduces some unclear priorities, which may confuse the focus on Webpack.
Overall. the answer is correct but could benefit from more practical details.

QUESTION :

Question:
How do you typically implement a component in React and what lifecycle methods do you use most frequently?

DIALOGUE:

Al Interviewer

"Thank you for sharing that. Let's move on to the next question: How do you typically
implement a component in React and what lifecycle methods do you use most

frequently?
Candidate
First of all, | look at the Ul to see where we're using this component. | try to determine if
it's a reusable piece or not. | prefer using state and side effects for our component, with
useEffect for performance. | use useMemo and useCallback. Regarding lifecycle
methods for functional components, useEffect with empty dependencies is like
componentDidMount. It's used for fetching data or subscriptions. useEffect with
dependencies acts like componentDidUpdate when state changes. Cleanup functions in
useEffect are like componentWillunmount. | also use useRef to find DOM elements.

Score:

86

Explanation:

The candidate's response demonstrates a good understanding of how to implement components in React,
especially with functional components and hooks. They correctly mention the importance of assessing whether a
component is reusable and articulate their use of state and side effects. The detailed reference to useEffect and
its parallels to lifecycle methods shows a solid grasp of React's behavior. However, while they provide a
comprehensive overview, the answer could benefit from a specific example of a component they've
implemented, which would further demonstrate practical experience. Overall, this response is quite strong and
fits well within the expectations for a middle-level candidate.

QUESTION :

Question:

What are some strategies you employ to optimize the performance and loading times of a complex React
application?

DIALOGUE:

Al Interviewer

"Thank you for that explanation. What are some strategies you employ to optimize the
performance and loading times of a complex React application?

Candidate

First of all, | reduce bundle size with code splitting using React.lazy and dynamic imports.
Removing unused dependencies is important. For memory, | use memoization for
components with useMemo and useCallback to avoid unnecessary renders. Minimizing
fetch times by using state management like Context. Additionally, | prefer pagination and
virtualization, using libraries like React Window for large lists. | also compress images.

Score:
85

Explanation:

The candidate provided a solid overview of several relevant strategies for optimizing a complex React
application. They mentioned code splitting and dynamic imports, which are effective for reducing bundle size,
and detailed practical techniques like memoization and minimizing fetch times with state management. The use
of pagination and virtualization shows an understanding of handling large data sets, and mentioning image
compression demonstrates awareness of asset optimization. Overall, the answer is well-structured and contains
practical examples but could benefit from deeper explanations or additional methods, hence landing in the 'Very
Good' category.

QUESTION :

Question:
How do you use CSS preprocessors or CSS modules to enhance the maintainability of your stylesheets?

DIALOGUE:
Al Interviewer

"Thank you for your response. How do you use CSS preprocessors or CSS modules to
enhance the maintainability of your stylesheets?

A~ ata_al

Lvanaigate

| prefer using libraries for styles like MUl and Chakra Ul. When creating custom
components and styles, | use CSS modules and preprocessors. | like preprocessors
because we can use variables, nesting, and mixins to create reusable variables. In main
projects, we store variables and mixins. CSS modules allow us to create styles scoped to
our components, preventing conflicts by generating unique class names.

Score:
85

Explanation:

The candidate demonstrates a solid understanding of CSS preprocessors and modules, highlighting their benefits
clearly. They mention using variables, nesting, and mixins for reusability, which shows practical knowledge. The
reference to libraries like MUl and Chakra Ul adds context, indicating familiarity with modern tools. However,
while the response is well-structured and correct, it could delve deeper into specific examples or situations
where these tools significantly improved maintainability, which would elevate the depth of their answer.

QUESTION :

Question:
Describe an experience where you had to resolve a cross-browser compatibility issue. What steps did you take?

DIALOGUE:

Al Interviewer

"Thank you for your explanation. Describe an experience where you had to resolve a
cross-browser compatibility issue. What steps did you take?

Candidate

First of all, as | understand, we're talking about Safari because we have fewer issues in
Google Chrome. In Safari, we had a problem with minimum height, and we needed to use
webkit for Safari browsers.

Al Interviewer

"That's a good starting point! Could you give a more detailed answer or share a concrete
example?

Candidate

As | mentioned, we had an issue with minimum height. | checked it by opening the Safari
browser on our local machine and tested to find the bug from the end user's perspective.

Score:
65

Explanation:

The candidate provides an initial relevant context regarding cross-browser compatibility issues in Safari,
specifically mentioning a specific technical challenge related to minimum height and the use of WebKit. However,
the answer lacks depth and fails to provide a comprehensive explanation of the steps taken or the impact of
those actions. While there's some acknowledgment of testing, it would benefit from additional details on the
solutions implemented, any debugging tools used, or how the issue was ultimately resolved. Therefore, while the
response is on-topic, it wouldn't be considered sufficiently detailed for a middle-level candidate.

QUESTION :

Question:

Can you explain the main differences between ES5 and ES6 in JavaScript, and why you might choose one over
the other in a project?

DIALOGUE:

Al Interviewer

"Thank you for sharing that. Can you explain the main differences between ES5 and ES6
in JavaScript, and why you might choose one over the other in a project?

Candidate

First of all, we have different syntaxes. In ES6, we have let and const, data structures like
Map, Set, WeakMap, WeakSet. We have modules, allowing import and export. There are
also promises, async/await, and rest and spread parameters.

Score:
77

Explanation:

The candidate provided a good overview of the differences between ES5 and ES6 by mentioning key features
such as variable declarations (let and const), new data structures (Map, Set), modules, promises, async/await,
and the rest/spread operators. However, while the answer touches on several important concepts, it lacks depth
and practical examples that would demonstrate a deeper understanding of the implications of using one version
over the other in real-world scenarios. To score higher, the candidate could have elaborated on the advantages
of using ES6 features in specific use cases or explained scenarios where ES5 might still be preferred.

QUESTION :

Question:
How would you use Git to manage version control in a distributed team environment?

DIALOGUE:

Al Interviewer

"Thank you for your answer. Lastly, how would you use Git to manage version control in
a distributed team environment?

Candidate

First of all, | use Git with a clean branching strategy, usually Git flow or feature branch
workflow. We have a main branch for production and development branches.

Al Interviewer

"That's a good starting point! Could you give a more detailed answer or share a concrete
example?

Candidate

Yes, sure. When creating a new task, we create a new branch from develop. We work on
this feature and create a pull request or merge request, depending on whether we use
GitLab or Bitbucket. After a successful code review by our lead, we merge it into develop.
Testing is performed on this branch.

Score:
85

Explanation:

The candidate's answer demonstrates a solid understanding of Git workflows, specifically mentioning a clean
branching strategy such as Git flow or feature branch workflow. They provide a clear structure of how they
manage branches in a distributed team environment, detailing the processes of creating branches, pull requests,
and the importance of code reviews. The inclusion of tools like GitLab and Bitbucket adds relevance to their
experience. However, the answer could benefit from further depth, such as mentioning conflict resolution
strategies or how they manage coordination among team members, which would align more with middle-level
expectations.

Conclusion:

Overall, the candidate exhibits a competent understanding suitable for a mid-level role. They align well with the job
requirements, though they should aim to showcase more detailed, project-based examples to underline their practical
experience and problem-solving skills. Their familiarity with key tools and frameworks suggests a promising fit, pending
further exploration of their hands-on experience.

Strengths:

The candidate demonstrates solid knowledge in frontend development, particularly with React, Webpack, and
JavaScript ES6. They have a good grasp of React components and hooks, CSS preprocessors, and Git workflows.
Experience with Formik and React Query, along with using modern libraries like MUI and Chakra Ul, further enhances
their profile.

Weaknesses:

While the candidate presents a solid foundational understanding, they lack depth in explaining specific experiences and
practical implementations, particularly with cross-browser compatibility, Webpack optimization, and ES6 features in
real-world scenarios. These areas could benefit from more concrete examples and detailed explanations.

